monodromy problem for the degenerate critical points

نویسندگان

razie shafeii lashkarian

department of mathematics, university of alzahra, tehran, iran dariush behmardi sharifabad

department of mathematics alzahra university

چکیده

for the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. when the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. in this paper we will consider the polynomial planar vector fields with a degenerate critical point at the origin. at first we give some normal form for the systems which has no characteristic directions. then we consider the systems with some characteristic directions at which the origin is still a monodromic critical point and we give a monodromy criterion. finally we clarify our work by some examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

Monodromy and Stability for Nilpotent Critical Points

We give a new and short proof of the characterization of monodromic nilpotent critical points.We also calculate the first generalized Lyapunov constants in order to solve the stability problem. We apply the results to several families of planar systems obtaining necessary and sufficient conditions for having a center. Our method also allows us to generate limit cycles from the origin.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Random Matrix Pencils, Branching Points, and Monodromy

We define complex projective n-space CP as C \ {0} under the equivalence relation (z0 : z1 : ... : zn) ∼ (cz0 : cz1 : ... : czn) where c ∈ C\{0}. A complex projective curve is then the set of points (a0 : a1 : ... : an) ∈ CP such that p(a0, a1, ..., an) = 0 for a fixed complex homogeneous polynomial p(z0, z1, ..., zn). Such a curve is a 2-dimensional, real, orientable Riemannian manifold, or Ri...

متن کامل

The spectral problem, substitutions and iterated monodromy

We provide a self-similar measure for the self-similar group G acting faithfully on the binary rooted tree, defined as the iterated monodromy group of the quadratic polynomial z + i. We also provide an Lpresentation for G and calculations related to the spectrum of the Markov operator on the Schreier graph of the action of G on the orbit of a point on the boundary of the binary rooted tree.

متن کامل

Extremal tests for scalar functions of several real variables at degenerate critical points

It is, of course, well known to students of calculus that the extremal nature of a function f at a critical point is decided if the so-called discriminant (or Hessian) given by the expression A = f 2 f x x f y y evaluated at the critical point is nonzero. It is also known through simple examples that, in the so-called degenerate case when A = 0 at the point, f may have either an extremum or a s...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
computational methods for differential equations

جلد ۳، شماره ۱، صفحات ۱-۱۳

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023